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Abstract

Comparing the output of a physics simulation with an
experiment, referred to as “code validation,” is often
done by visually comparing the two outputs. In order
to determine which simulation is a closer match to the
experiment, more quantitative measures are needed.
In this paper, we describe our early experiences with
this problem by considering the slightly simpler prob-
lem of finding objects in a image that are similar to
a given query object. Focusing on a dataset from a
fluid mixing problem, we report on our experiments
with different features that are used to represent the
objects of interest in the data. These early results
indicate that the features must be chosen carefully to
correctly represent the query object and the goal of
the similarity search.

1 Introduction

Computer simulations are increasingly being seen as
the third mode of science, complementing theory and
experiments. In order to validate the physics models
in these simulations, their results must be compared
with an experiment using quantitative measures - this
is referred to as “code validation”. In this paper, we
describe how data mining and information retrieval
techniques can be used to aid the validation of a sim-
ulation with an experiment. We consider the problem
of shock-driven mixing of two fluids of different densi-
ties. When the interface between them is accelerated
by a shock wave striking the interface perpendicu-
larly, it results in an instability referred to as the
Richtmyer-Meshkov instability [1, 2]. This instabil-
ity occurs in various natural and man-made settings
such as supernova explosions, the interiors and wakes

of jet engines, combustion chambers, etc. It is there-
fore important to understand and model this instabil-
ity accurately. In recent years, researchers have been
able to produce the Richtmeyer-Meshkov instability
in high-quality experiments. This data is now being
used to validate simulation codes in order to deter-
mine the numerical techniques that best match the
results in the experiments [3, 4].
As the first step towards code validation in the

context of this particular problem, we consider the
slightly simpler task of identifying similar “objects”
in simulation data. This is motivated by the fact that
the image of two fluids mixing, as shown in Figure 1,
has clearly identifiable “mushroom” shaped objects.
If we could quantitatively measure the similarity of
these objects taken in isolation, we could then com-
bine this measure with additional information such as
the number and locations of the mushrooms to quan-
titatively compare the experimental image with the
ones from simulations. In this paper, we focus on the
first task of identifying similar objects in the simu-
lation data for a given query object. Our primary
approach is to represent objects in terms of carefully-
designed numerical features such that features of sim-
ilar objects in different orientations, scales, and res-
olutions are close to each other. This paper is or-
ganized as follows. After reviewing related work in
Section 2, we describe a preliminary implementation
of our Similarity-Based Object Recognition (SBOR)
system for simulation data. This system provides a
test-bed for evaluating different features in retrieving
similar objects. Initial experiments with a number
of simple features using data from turbulence simu-
lation are reported in Section 4. We conclude this
paper and highlight some of our ongoing work in Sec-
tion 5.
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Figure 1: The left image shows the flow pattern of
a Richtmyer-Meshkov experiment performed at Los
Alamos National Laboratory. The same experiment is
simulated by high resolution numerical methods and
the result is shown in the right image [3].

2 Related Work

Much of the research on pattern recognition for tur-
bulence data has been focused on extracting and track-
ing topological features such as flow lines and vor-
texes for visualization [5, 6, 7], and identifying high-
level events such as bursting and shock waves based
on these features [8, 9]. These works typically assume
a single large fluid dataset, and the goal is to allow
scientists to visualize the large amount of data avail-
able and build models to explain the underlying phe-
nomenon. On the other hand, our goal of code valida-
tion is to compare and validate datasets from simula-
tions with experiments. In general, these datasets
contain different physical measurements, and vary
greatly in resolution and precision. As such, we need
to construct a system that can support a large array
of different features and provide robust methods for
feature extraction and comparison. The similarity-
based approach described in this paper is inspired by
the recent progress in the area of Content-Based Im-
age Retrieval (CBIR).
CBIR systems exploit various features derived from

the images and model visual similarity by mathemat-
ical distance functions between feature vectors. Ex-
tensive research has been performed to derive com-
pact and representative features and distance func-
tions to model visual cues such as color, texture, and

shapes [10, 11, 12]. Many of these approaches often
use features to represent an entire image. A related
problem arises when the query object is not an im-
age, but a part of an image. For example, instead
of using the entire image in Figure 1 as a query, a
scientist might outline just one of the “mushroom”-
shape structures as the object of interest. In this
case, the problem of CBIR becomes more complex
as we now need to find sub-images that are a close
match. To clearly identify this added level of com-
plexity, we refer to this problem as similarity-based
object retrieval (SBOR). There are two approaches
to the SBOR problem: data-independent and data-
dependent [13]. In the data-independent approach,
images are divided into overlapping or non-overlapping
rectangular regions or tiles, and feature vectors are
extracted from each tile and stored in a database
for similarity search [14, 15]. Data-dependent ap-
proaches, on the other hand, apply object segmenta-
tion algorithms to extract objects from images and
perform similarity search on feature vectors repre-
senting individual objects [16, 17]. Due to the small
size and fine granularity of tile images, the data-
independent approach typically generate much larger
amount of feature data than the data-dependent ap-
proach. On the other hand, the data-independent
approach is more flexible and accurate as it is fea-
sible to incorporate the query object as part of the
input to the object segmentation and extraction al-
gorithms. Our work will primarily focus on the data-
independent approach.

3 Proposed System

In this section, we describe a preliminary implemen-
tation of a SBOR system for simulation data. There
are three major modules in the system: graphical user
interface, feature extraction, and similarity search.
Their relationship is depicted in Figure 2. In a typi-
cal similarity search, a user first opens an image from
the image database and defines a rectangular tile on
the image as the query image. An example is shown
in Figure 3, in which the top right corner of the image
is used as a query image. Then, the user specifies the
types of features to be used in the similarity search.
The user can select from a large array of features,
ranging from simple pixel statistics to complicated
visual attributes such as shape and texture. Based
on the user’s familiarity of the system, the user may
start with simple features to obtain a quick response,
and then refine the results with more sophisticated
features. On the other hand, the user may choose a
particular combination of features to exactly pinpoint
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the characteristics of interest.

Figure 2: Schematic diagram of the proposed
similarity-based object recognition system.

Based on the types of features chosen by the user,
the feature extraction module populates the feature
database with feature vectors extracted from images
in the database. We adopt a simple sliding-window
approach in generating feature vectors from images.
A tile window, with dimensions same as the query
image, is moved across each image in a fixed step-
size. A feature vector, which contains all features
selected by the user, is computed for the part of the
image under the tile window at each location. In
the experiments reported here, a small step-size of
two pixels is used for both the horizontal and verti-
cal directions in order to capture spatial variations
of the data. This results in overlapping tiles. Other
step-sizes are also possible. The feature vector, the
location of the tile image, and the ID of the original
image in the image database are stored in the feature
database. Even though our focus for this paper is the
design of features for similarity search, it should be
noted that this feature database is also amenable to
more sophisticated pattern recognition tools such as
dimension reduction, classification, and clustering.
With the feature database in place, the similar-

ity search module seeks out the feature vectors in
the database that are “similar” to the feature vector
corresponding to the query image. To properly de-
fine the notion of similarity, we assume that there is
a distance, or dissimilarity, function associated with
each type of feature. Two feature vectors that are a
small distance apart are regarded to be more similar
to each other than those with a large distance be-
tween them. Some of the most commonly-used dis-
tance functions are described in detail in [13] and [18,
ch. 11]. Based on the distances between the query

Figure 3: Screen-shot on how to specify a query tile
image.

feature and the features in the feature database, the
similarity search module supports two types of search
functions: ε-search and k-Nearest-Neighbor (k-NN)
search. In a ε-search, the module returns all feature
vectors in the database whose distance from the query
feature is within a positive threshold ε. ε-search is
intended for experienced users who can correlate dis-
tance values with the level of similarity. In a k-NN
search, the k feature vectors in the database closest
to the query feature are returned. A small k in a k-
NN search allows a user to quickly examine the small
set of returned results and assess how relevant a par-
ticular feature is in a similarity-search task. When
more than one feature is used a similarity search,
the results on individual features can be combined
by conjunction and/or disjunction. Figure 4 shows
an example of how to combine two features in a sin-
gle similarity search.
The returned results are finally presented to the

user via the graphical user interface. Based on the
returned results, the user can refine the search by
modifying different search parameters and specify-
ing different sets of features to be used. Except for
expert users who are very familiar with the system,
search refinement can be a daunting task due to the
large number of parameters and feature available. A
more intuitive approach, called “user-relevance feed-
back” is to have the user identified relevant and non-
relevant entries among all the returned results, and
apply machine-learning techniques to infer appropri-
ate modifications in search parameters. We are cur-
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Figure 4: This figure illustrates how a similarity
search is defined. The top left image is the query im-
age specified in Figure 3. Two features, “Histogram”
and “ART2D”, are used in this search, and their re-
spective search parameters are specified in the two
rectangular regions shaded in different gray levels.

rently investigating a number of user-relevance feed-
back techniques that are pertinent to our system.

4 Experiments

For the work in this paper, we consider the data
from a high resolution 3-D shock tube simulation
performed on a 2048 × 2048 × 1920 grid over 27,000
time steps, obtained on 960 nodes of the IBM-SP
Sustained Stewardship TeraOp system at Lawrence
Livermore National Laboratory [19]. At the begin-
ning of the simulation, two gases are separated by a
membrane in a tube; then the membrane is pushed
against a wire mesh. The simulation models the re-
sulting mixing of the two gases.
Several variables are output by the simulation at

each grid point at each time step. These include pres-
sure, density, velocity, etc. In our initial work, we fo-
cus on the entropy which is available in Brick-of-Byte
(BOB) files, with one byte of information per grid
point. This information is the entropy scaled linearly
with a minimum of 0 and a maximum of 255. Each
node of the IBM-SP is responsible for a 256 × 256
piece of the data, and there is a BOB file for each
of these pieces. Each node of the system generates
a file for the output from each time step. For a pre-
liminary testing of our SBOR system, we randomly
select two 2-D slices along the wire mesh perpendic-
ular to the direction of the impact. The following
transformations are then applied to these two slices:

• Anti-clockwise rotation by 36o (rot36), 90o (rot90),
and 150o (rot150).

• Reflection about the vertical axis in the middle
(flip).

• Morphological erosion (erode) and dilation (di-
late) by a 3× 3 cross-shaped element.

Examples of these transformation together with the
original image are shown in Figure 5.

Figure 5: One of the original 2-D slices and the cor-
responding five spatial transformations.

Five query tile images of distinctive patterns are
selected from the two original slices. All query tile
images are of dimension 64 × 64, and their locations
within the slices are shown in Figure 6. The goal of
the experiment is to test how well different features
can identify these query patterns in all the trans-
formed slices described above. As explained in Sec-
tion 1, it is desirable to use features that can robustly
handle geometrical and spatial transformations. Mor-
phological erosion and dilation are included to mimic
the resolution difference between turbulence data ob-
tained from simulations and physical experiments.

4.1 Feature Definitions

This section describes the features tested in our ex-
periments. We focus primarily on features that pro-
vide a general and compact description of how pixel
values are distributed inside a tile image. For the
experiments reported in this paper, the l1 metric, or
sum of absolute differences between coordinates, is
used as the distance function for all features. The
list of features used in our experiment include:
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Figure 6: 2-D slices of entropy data from simulations.
The five bounding boxes indicate the query images
used for testing.

Simple Features This is a four dimensional vector
that consists of the mean, the standard devi-
ation, the maximum, and the minimum of all
pixel values in a tile image.

Histogram This is a 16-bin histogram of pixel val-
ues in a tile image. The bins are uniform across
the dynamic range.

ART Angular Radial Transform (ART) belongs to
a broad class of shape analysis tools based on
moments [20]. Our implementation of ART is
based on the region-shape descriptor defined in
MPEG-7 [11, ch. 15]. ART projects a 2-D sig-
nal within the unit circle onto a set of complex
orthonormal basis functions. The ART basis
function of angular order n and radial order n
in polar coordinates is given by

Vnm(ρ, θ) =

{

exp(jmθ)/2 n = 0
exp(jmθ) cos(πnρ) n 6= 0

The ART coefficient Fmn of a 2-D signal f(ρ, θ)
is defined by

Fmn =
1

π

∫ 2π

0

∫ 1

0

V ∗

nm(ρ, θ)f(ρ, θ)ρ dρ dθ (1)

The actual implementation of ART feature is
a discretization of Equation (1). The origin of
the functions is set at the centroid of the image.
Rotational invariance is achieved by using only
the magnitude of Fmn, and scale invariance is
achieved by normalizing all Fmn by the area
of the image, i.e. F00. Following the MPEG-7
standard, twelve angular basis and three radial
basis are used. This results in a 35-dimensional
feature vector as the normalized F00 is always
one and thus dropped from the representation.
Unlike MPEG-7, we do not quantize the coef-
ficients and retain the full floating-point preci-
sion for similarity search.

BART As alluded to in Section 1, we believe that
shape is a very important attribute in identi-
fying similar objects in turbulence data. To
provide a description of the shape of a 2-D ob-
ject independent of the internal pixel values, we
propose a slight modification of ART called the
Binary ART (BART) feature. A simple adap-
tive thresholding scheme is first applied to the
input tile image to convert it to a binary im-
age, with the foreground pixels set to 255 and
the background pixels to zero. The threshold is
chosen to provide a good definition of the object
boundary. It is set to be the first minima of a
32-bin histogram of all pixel values in the input
tile image. The BART feature is defined to the
ART feature of the resultant binary image.

4.2 Experimental Results

We follow the procedure described in Section 3 for
testing: a 64 × 64 tile window is moved across each
transformed slice in a step-size of two pixels horizon-
tally and vertically. In order to be robust against
rotation at an arbitrary angle, we only consider the
pixels within the largest circle inscribed in the tile
window for feature extraction. Within each trans-
formed slice, we identify those tile images that over-
lap more than 90% with a query pattern to be the
ground-truth for that particular query. A partial-
overlap criteria is used because first, features should
be robust against small translations induced by par-
tial overlapping, and second, complete overlap is sim-
ply unachievable for some of the transformations such
as rot36 and rot150. After establishing the ground-
truth, we use two metrics to measure how well the
images in the ground-truth can be identified by a
particular feature. These two metrics are Average
Normalized Modified Retrieval Rate (ANMRR) and
the Average Total Rank (ATR).
ANMRR was originally proposed by the MPEG-7

committee in evaluating visual features [11, ch. 12].
ANMRR is computed as follows. For the particu-
lar feature being tested, we first compute the feature
vector q for the query image and the feature database
D of all the tile images. Let the ground-truth for q
be G(q) ⊂ D. We then perform a k-NN search with
k equal to twice the size of G(q). For each feature
vector x ∈ G(q), we define a ranking score r(x) to be
the rank of x if x is returned in the k-NN search, or
1.25 ·k if x is not retrieved at all. We define the Nor-
malized Modified Retrieval Rank (NMRR) for query
q by averaging the ranking scores for all the feature
vectors in G(q), and normalizing the result so that it
is within the range of zero and one. Mathematically,
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NMRR(q) is defined by the following equation:

NMRR(q) =

∑

x∈G(q) r(x)/|G(q)| − 0.5 ∗ (1 + |G(q)|)

1.25 ∗ k − 0.5 ∗ (1 + |G(q)|)
(2)

If feature vectors in the ground-truth are among the
top-ranked results from the k-NN search, NMRR(q)
is close to zero. On the other hand, if none of the
ground-truth are retrieved, NMRR(q) becomes one.
ANMRR is simply the average of the NMRR scores of
all the testing queries. Figure 7 shows the ANMRR
scores for the four features described in Section 4.1
under different transformations. ART produces an
average ANMRR value of 0.22, which is the lowest
among all the features experimented. Its advantage
over other features is especially pronounced in erode
and dilate, the two morphological transformations.
Unlike simple features and histogram, ART takes into
account the spatial relationship between pixel values.
Thus, it is more robust against transformations such
as erosion and dilation which modify the distribution
of pixel values. The similar BART feature performs
slightly worse. The reason is that the binarization
in BART completely discards the variation in pixel
values, which is an important cue to discern similar
patterns in the transformed images used in our ex-
periments.

Figure 7: ANMRR of the tested features under vari-
ous transformations.

ANMRR is very useful in quantifying the perfor-
mance of interactive similarity search [21]. However,
a similarity search based on a few simple features
is unlikely to capture all possible variations of simi-
lar objects. Further refinement of the search results
based on computationally intensive pattern recogni-
tion techniques is often required. Thus, it is im-
portant not to prematurely prune away any possible
matches in the early stages of similarity search. At

the same time, it is desirable to keep the set of search
results as small as possible in order to support inter-
active exploration and reduce complex computation
for refinement. To this end, we define an alterna-
tive metric called Total Rank to measure how well a
feature can capture all similar objects without an ex-
cessive number of false positives. We first perform an
ε-search on a query q by setting ε equal to the max-
imum distance between q and all the feature vectors
in the ground-truth G(q). Denote the set of feature
vectors retrieved by T (q). We define the total rank
to be the ratio between the sizes of T (q) and G(q).
A small total rank indicates a small number of false
positives. ATR is the average of the total ranks for
all five testing queries. Figure 8 shows the ATR for
the four feature vectors under different transforma-
tions. Histogram produces the lowest ATR among
all the features. On the contrary, ART and BART,
which show very good performance in terms of AN-
MRR, are the two worst performers in this experi-
ment. We attribute this reversal of performance to
our approach in constructing the ground-truth set.
Recall that some of the tile images in our ground-
truth have only 90% overlap with the actual query
object. Due to the large overlap, the histograms of
these tile images and the query object are still very
close to each other. On the other hand, every ART
coefficient, as defined in Equation (1), depends on
all the pixels in an image. Depending on which 10%
of query object pixels are missing in the tile images,
the corresponding ART coefficients may change sig-
nificantly. As a result, the ART distance between the
query object and some of the tile images in its ground-
truth set may become exceedingly large, leading to a
large ATR value.

Figure 8: Total rank of the tested features under var-
ious transformations.
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5 Conclusions and Future Work

In this paper, we have described our initial effort to
build a SBOR system for code validation of simula-
tion data. Our basic approach is to first capture the
salient features of the local structure or object as a
multi-dimensional feature vector, and then identify
similar objects based on distances between the cor-
responding feature vectors. We have compared four
different types feature vectors, including simple, his-
togram, ART, and BART, in identifying objects un-
der various spatial transformations. ART provides
the best overall retrieval results. Histogram, on the
other hand, outperforms others in retaining the entire
ground-truth with the least number of false positives.
We are currently improving the SBOR system in

the following aspects. First, we are investigating how
to combine multi-resolution analysis with our tiling
scheme as the current fixed-size tile window fails to
capture similar objects of different scales. Second,
post-processing techniques such as clustering and di-
mension reduction are being applied to reduce the
size of the feature database so as to improve com-
putational performance in similarity search. Third,
we are extending the current system from handling
just a single variable of entropy to multiple variables,
as well as from 2-D slices to the entire 3-D dataset.
Finally, we are incorporating machine learning tech-
niques with our system to support user relevance feed-
back.
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